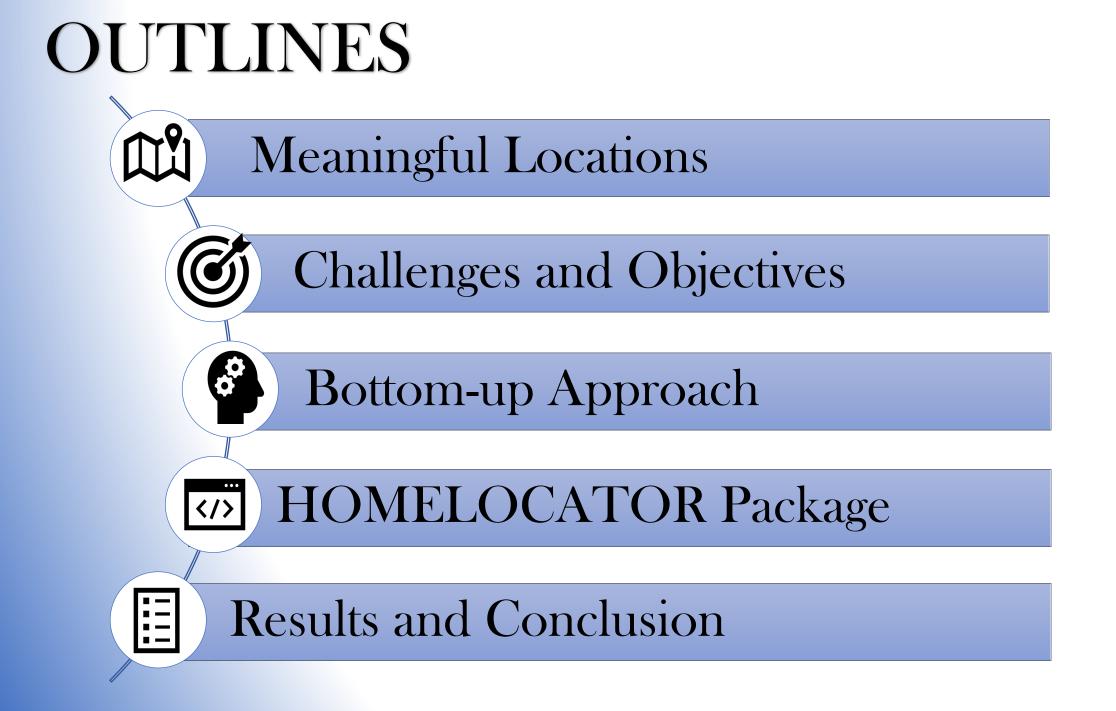
Identifying Meaningful Locations of Social Media Users

Qingqing Chen, Research Associate Ate Poorthuis, Assistant Professor Singapore University of Technology and Design

> <u>qingqing_chen@sutd.edu.sg</u> <u>ate_poorthuis@sutd.edu.sg</u>

.eaflet | Imagery provided by services from the Global Imagery Browse Services (GIBS), operated by the NASA/GSFC/Earth Science Data and Information System (ESDIS) with funding provided by NASA



MEANINGFUL LOCATIONS

CHURCH

HOME

COFFEE SHOP

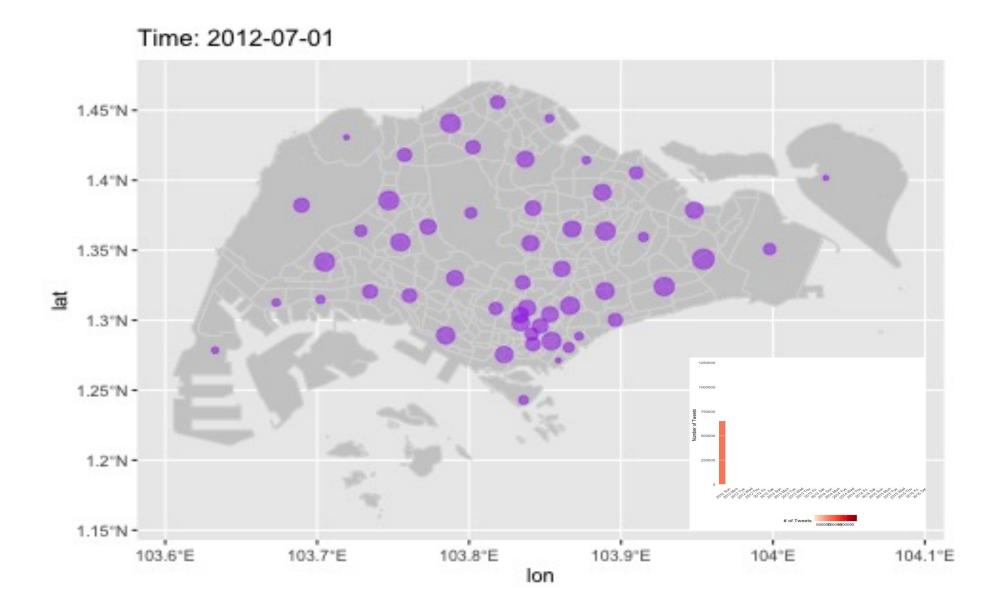
Office

CANTEEN

SCHOO

LEISURE PLACES

LIBRARY

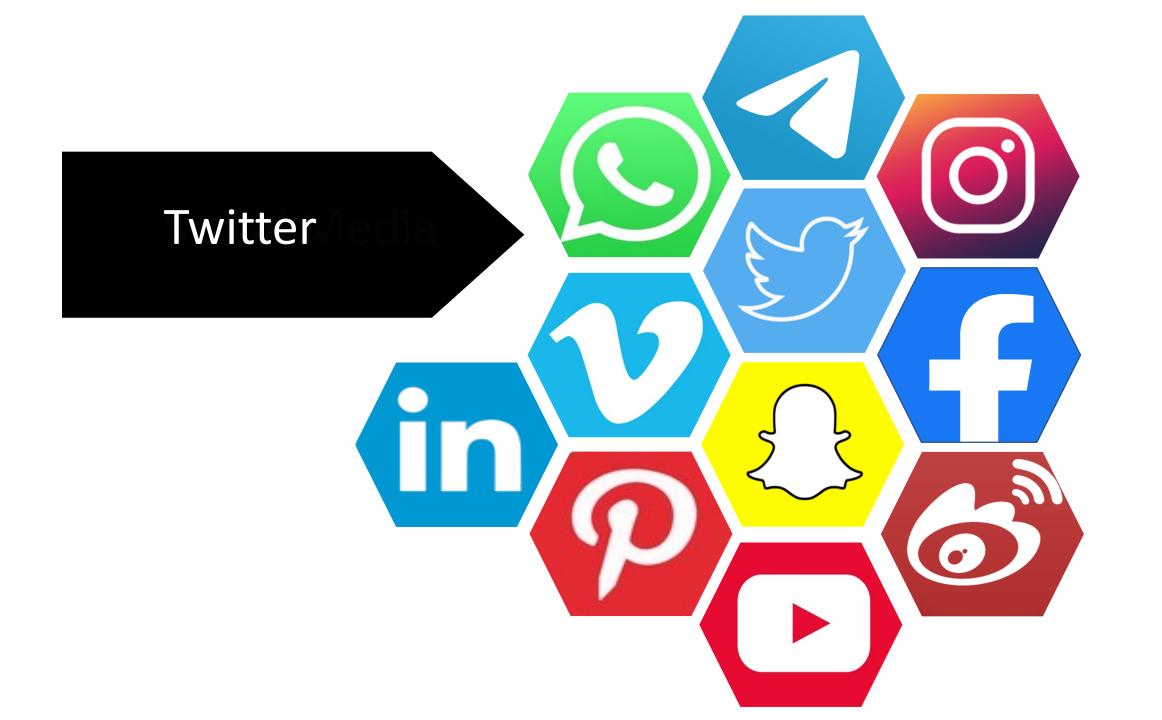


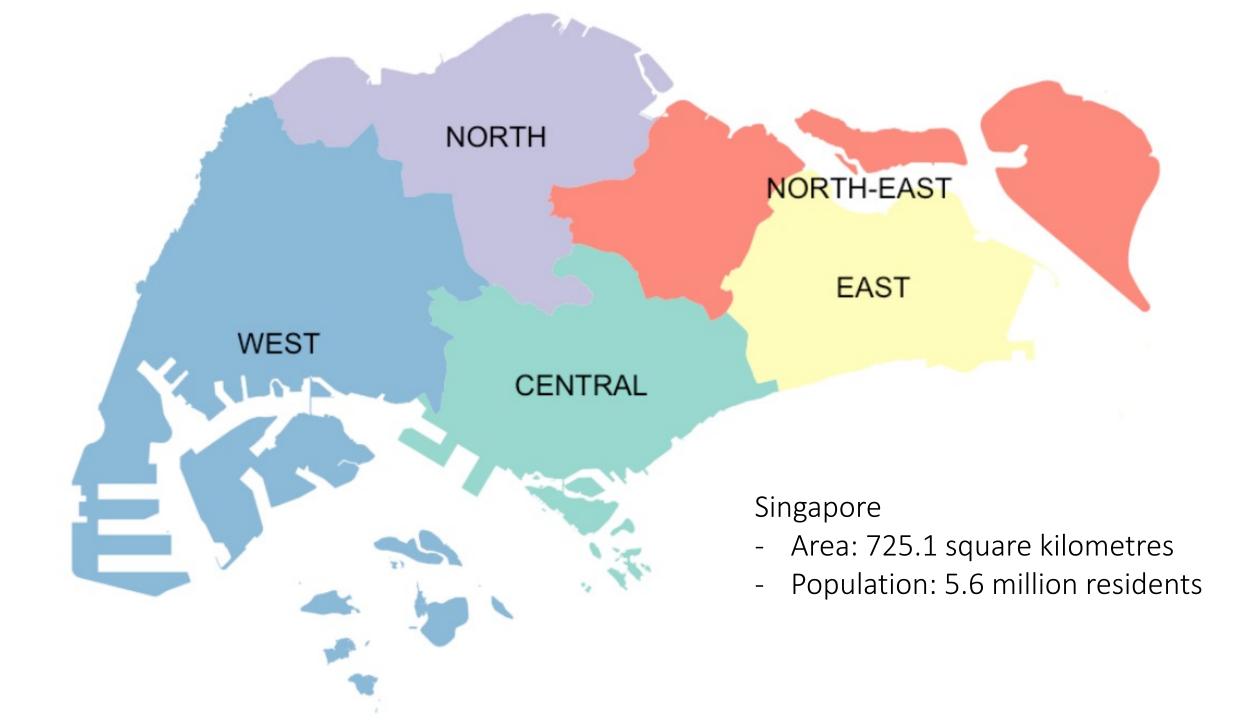
Users' locations are extremely valuable for urban system study! However Locations are currently everywhere... And Users can go all over the city... But On the surface, This tells us relatively little about the nature and meaningful of these locations... So How can we extract those meaningful locations from the data?

First Objective

Bottom-up approach:

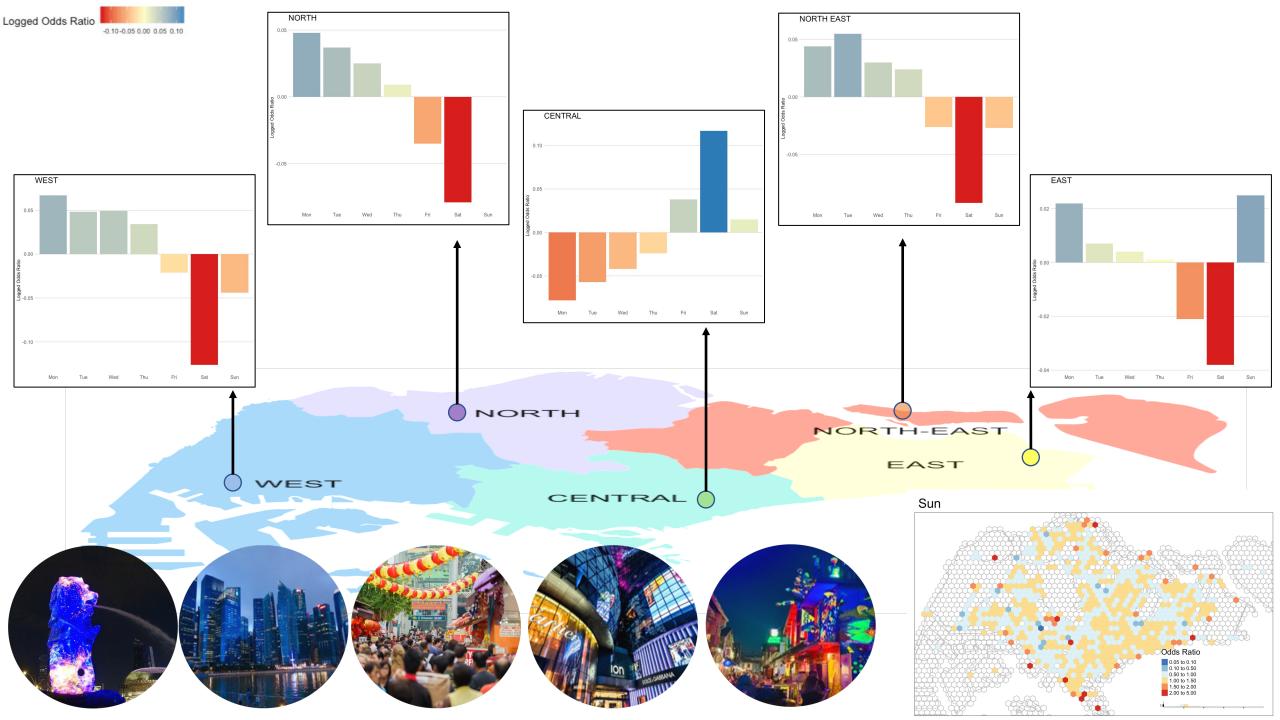
Identify meaningful locations from mobile technology, or more specifically speaking, from Social Media Data, based on its temporal and spatial features.

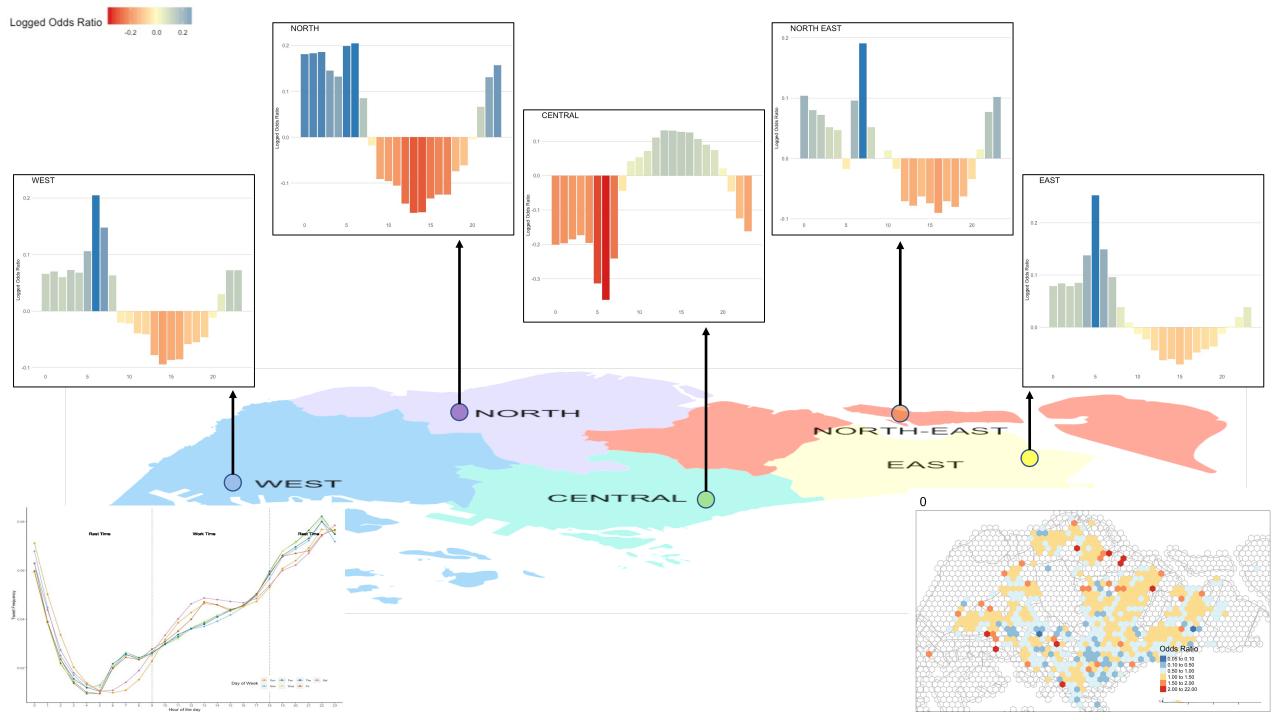




A grid with cell sizes of **750m** yields a total number of 1,942 cells in Singapore, each cell (from now on: location) has its own identified ID.

Around 24.5 million tweets sent from around 359k users in Singapore between July 2012 and July 2015.





Custom Model

	Deriving time related variables from Timestamp		Such as year, month, day, day of the week, hour of the day, etc.								
	Set pre-conditions meaningful us		•		Condition Data points sent by the user Unique locations the user was active Data points sent at a location by the user Unique hours the user was active at a locat Unique days the user was active at a $\frac{1}{2}$			e user a location	Min. Requirement> 10 tweets> 10 locations> 10 tweets $\sin > 10$ hours $\cos > 10$ down		
				Split ac	tivitv in	Time period t Potential Twi	tter bots	as active at a	Time fr Weeken Weekda Rest Ti	d y	Time period Saturday & Sunday Monday to Friday 1:00 - 8:00 & 19:00 - 24:00
_	Activity	Expression		•	time fra	mes			Work T Early M	ime	9:00 - 18:00 6:00 - 12:00 1:00 - 5:00 & 13:00 - 24:00
perc	centage of tweets on weekends entage of tweets on rest times malized Tweets at a	$\frac{\frac{T_{wk}}{T_{wk}+T_{wd}}}{\frac{T_{rt}}{T_{rt}+T_{wt}}}$ $\frac{T_p}{max(T_p), p \in P_u}$		0.2 0.2 0.1	$0.2 imes rac{T}{T_r}$ $0.2 imes rac{T}{T_r}$ $0.1 imes rac{T}{max}$	$\frac{T_{ri}}{t+T_{wt}}$	We	eight an varia	d score ables	e the	
Norm	location alized unique days at a location alized time period at a location alized unique months	$rac{N_{d,p}}{max(N_{d,p})}, orall p \in P_u$ $rac{TP_p}{max(TP_p)}, orall p \in P_u$ $rac{N_{m,u}}{N_{m,u}}$		0.1 0.1 0.1	$0.1 \times \frac{1}{m}$ $0.1 \times \frac{1}{m}$	$\frac{TP_p}{ax(TP_p)}$				Extrac	t the 'home' location
Norn	nalized unique months week nalized unique hours at a location	$\frac{\frac{N_{m,u}}{12}}{\frac{N_{dow,u}}{7}}$ $\frac{N_{h,p}, \forall p \in P_u}{24}$		0.1	0.1 imes $0.1 imes$ $0.1 imes$ $0.1 imes$ $0.1 imes$					ba	used on the score

Current State-of-the-Art

➢ Based on spatial-temporal features

- Calculate the weight of posted tweets or tract activity across different time frames (e.g., Ahas et al. 2010, Efstathiades et al. 2015; Lin et al. 2018, etc.)
- ➢ Based on often-available social network
 - Use the user's friend network and tie strength (e.g., Jurgens 2013; McGee et al. 2013; Hironaka et al. 2016; Chen et al. 2016, etc.)
- Based on actual-content estimation
 - Detect the actual content of social media messages or user profiles (Hecht et al. 2011; Chandar et al. 2011; Chang et al. 2012, etc.)

Problems Faced

➢ Wide variety of different approaches without a clear 'best-practice'.

- Difficult to evaluate the effectiveness of each approach as a 'groundtruth' most often doesn't exist.
- Algorithms are not always discussed in detail in publications, which makes comparing algorithms as well as reproducing work difficult.
- Difficult to evaluate the robustness of subsequent findings due to the terms and conditions that often prevent the sharing of social media data.

Second Objective

R Package: HOMELOCATOR

- Provide a consistent framework and interface for the adoption of different approaches to meaningful location identification
 - Approach can be written as a 'recipe', which make it easy to be used
 - Make comparison across different algorithms become possible
 - Functions of the package are flexible enough for people to create new variables or tune the existing variables' thresholds of the recipes

Three specific a	Three specific attributes are needed for each data point						
User ID	Location	Timestamp					
User ID	Location	Timestamp					
User ID	Location	Timestamp					
User ID	Location	Timestamp					
User ID	Location	Timestamp					
User ID	Location	Timestamp					

User ID	Location	Timestamp	

Timestamp

Month of the Year	Day of the Week	Hour of the Day	Time Frame	Time Period
 Jan Feb Mar Apr Dec 	 Mon Tue Wed Thu Sun 	 1 2 3 4 23 	 Morning Afternoon Evening Work Rest Leisure 	

Parallel Computing						
()						
	Шů	Month of the year	Day of the week	Hour of the day	Time frame	Time period
	Шů	Month of the year	Day of the week	Hour of the day	Time frame	Time period
	Ωů	Month of the year	Day of the week	Hour of the day	Time frame	Time period
	Шů	Month of the year	Day of the week	Hour of the day	Time frame	Time period

Validate input dataset, ensuring necessary columns are present validate_dataset(df, user, timestamp, location)

derive additional temporal variables (e.g. day of week)
enrich_timestamp(df, timestamp) # Derive temporal features from timestamp

nest by user (creates a nested tibble for each user, allowing subsequent parallel processing per user) nest_by_user(df_valid, group_var = user)

filter based on column within nest
filter_in_nest(n_points_per_location > 10) # only keep locations with
 more than 10 data points

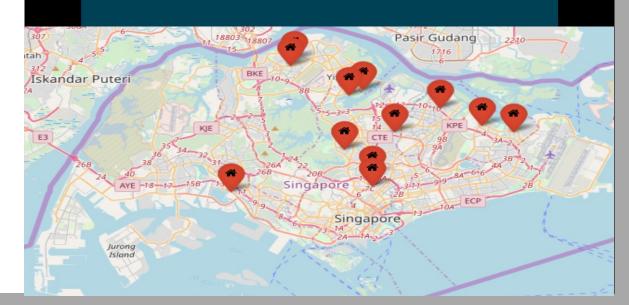
extract most likely residential location after previous filter and weighting steps extract home(...)

devtools::load_all(".")

Loading homelocator

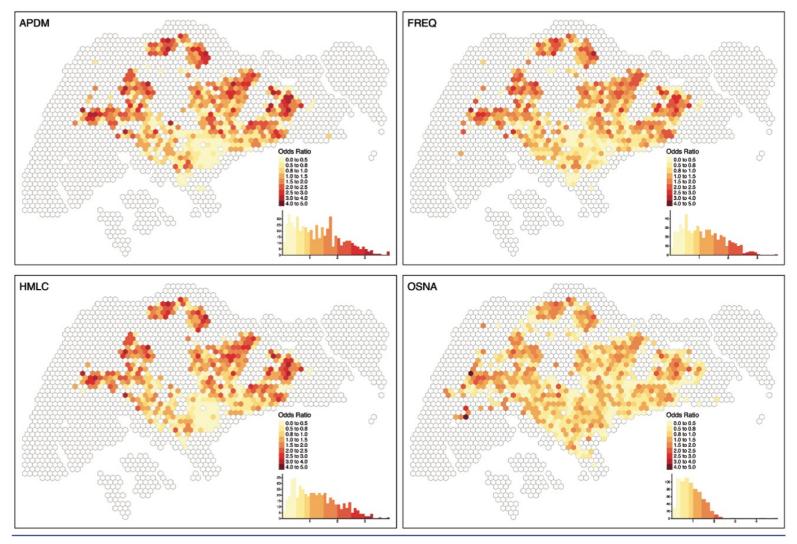
Welcome to homelocator package!

> identify_home(t, user = "u_id", timestamp = "created_at", location = "grid_id", recipe = "homelocator")



Results

- Four approaches focused on residential (home) locations
- 22174 (6.18%) users have been assigned a location by all four algorithms (common users)
- 13233 (59.68%) users get assigned the same home location even though the approaches are quite distinct
- The package opens the door for comparing across different algorithms .



Approach

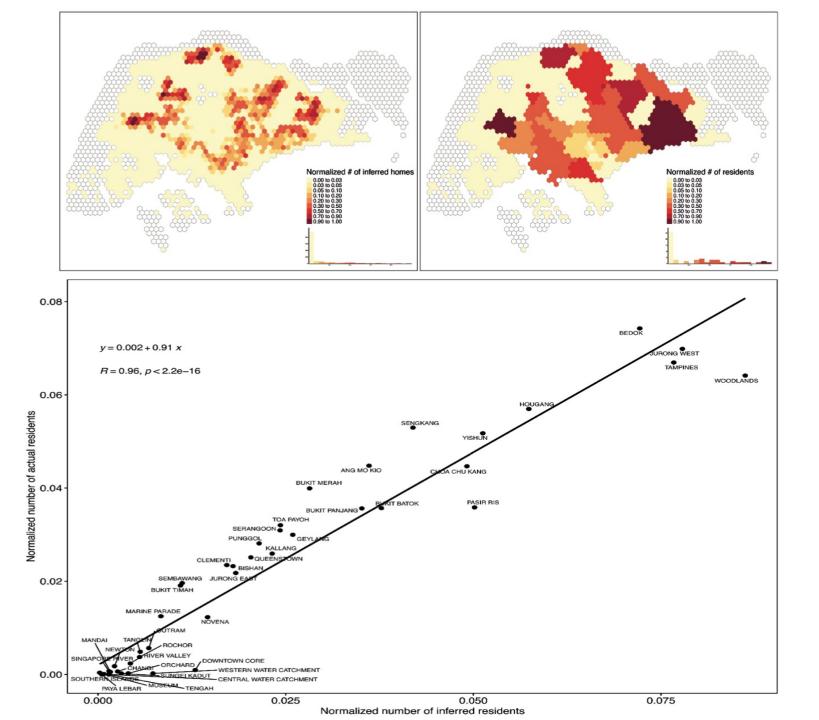
APDM (Ahas <i>et al</i> . 2010)	
FREQ	
HMLC	
OSNA (Efstathiades et al. 2015)	
Ensemble	

Results

Identified 40,374 (31.0%) users' homes of 130,311 users Identified 47,263 (36.3%) users' homes of 130,311 users Identified 33,488 (25.7%) users' homes of 130,311 users Identified 116,104 (89.1%) users' homes of 130,311 users Identified 21,863 (78.1%) users' homes of 28,007 shared users

Results

- Strong linear correlation (R = 0.96) between the normalized number of inferred residents and the normalized number of actual residents in Singapore
- Combination of algorithm is a fruitful way to infer the underlying the geography of a population and thus further be used in analysis of urban processes



Conclusion

Outline	Outline an ensemble approach to inferring meaningful locations from geotagged social media content through a 'homelocator' ${f R}$ package
Evaluate	The resulting spatial patterns from the ensemble approach closely correlated to the actual population distribution
Make	Make comparison across different approaches and algorithms Easier More accessible More customizable
Increase	Increase transparency and reproducibility of work that relies on the inference of meaningful locations
Future work	 Apply the methods to the current social media climate like cell phone mobility data. Extracted meaningful locations will be used to analyse and predict urban mobility patterns, for different groups of people and for different neighbourhoods.

Acknowledgement

This research, led together with the Housing and Development Board, is supported by the Singapore Ministry of National Development and the National Research Foundation, Prime Ministers Office under the Land and Livability National Innovation Challenge (L2 NIC) Research Programme (L2 NIC Award No. L2NICTDF1-2017-4). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the Housing and Development Board, Singapore Ministry of National Development and National Research Foundation, Prime Ministers Office, Singapore.